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Abstract

We propose a Bayesian low-rank graph regression modeling (BLGRM) framework
for the regression analysis of matrix response data across subjects. This develop-
ment is motivated by performing detailed comparisons of functional and structural
connectivity data across subjects, groups, and time and relating connections to par-
ticular behavioral measures. The BLGRM can be regarded as a novel integration
of principal component analysis, tensor decomposition, and regression models. In
BLGRM, we find a common low-dimensional subspace for efficiently representing
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all matrix responses. Based on such low-dimensional representation, we can easily
quantify the effects of various predictors of interest, such as age and diagnosis sta-
tus, and then perform regression analysis in the common subspace, leading to both
substantial dimension reduction and much better prediction. We adapt a parameter
expansion approach to our graph regression model (PX-BLGRM) to address weak
identifiability and high posterior dependence among parameters in our decomposi-
tion model. Posterior computation proceeds via an efficient Markov chain Monte
Carlo algorithm. A simulation study is performed to evaluate the finite sample per-
formance of BLGRM and its comparison with several competing approaches. We
apply BLGRM to the rest functional magnetic resonance imaging (rfMRI) data set
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

Keywords: Connection matrix; Covariate; Human Connectome; Low rank graph regression;
Markov chain Monte Carlo.
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1 Introduction

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (http : //www.adni−

info.org/) as a groundbreaking “Big Data” project for Alzheimer’s disease (AD) has col-

lected imaging, genetic, clinical, and cognitive data from thousands of subjects since 2004.

An important question of interest for ADNI is to quantify the clinical, cognitive, imag-

ing, genetic and biochemical biomarker characteristics of the entire spectrum of AD as

the pathology evolves from normal aging (NC), to mild cognitive impairment (MCI), to

dementia or AD. This paper is motivated by the joint analysis of rest functional magnetic

resonance imaging (rfMRI) data and clinical and behavioral variables from n = 153 sub-

jects in the ADNI study. After applying a standard preprocessing pipeline, we obtained

a 116×116 rfMRI correlation matrix from each of the 153 subjects. We are particularly

interested in addressing two questions:

• (Q1) the first one is to derive functional-connectivity based brain biomarkers for

classifying AD, NC, and MCI groups;

• (Q2) the second one is to identify a common low-dimensional subspace that charac-

terizes the major variations of brain functional network across subjects and groups.

Statistically, these questions of interest can be formulated as the use of a vector of predictors

(e.g., diagnosis status), denoted as x = (x1, . . . , xp)
T , to predict a V × V matrix response,

denoted as L = (L(g,g′))1≤g,g′≤V , where g is a vertex and V is the total number of vertices. In

this case, L is the rfMRI connectivity matrix and x may include age, gender, and diagnosis

status (AD, NC, or MCI). The rfMRI data has been widely used in behavioral and cognitive

neuroscience to understand functional segregation and integration of different brain regions

in a single subject and across different populations [8, 16, 13, 9, 3].

To answer questions (Q1) and (Q2), we develop a Bayesian low-rank graph regression

modeling (BLGRM or Bayesian LGRM) framework to deal with three challenges arising
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from the use of x to predict high-dimensional L. Such challenges include (i) complex spatial

information, (ii) high-dimensional data, and (iii) the remarkable variability of brain func-

tional connectivity across subjects and groups. It is common to believe that organization

of brain networks are governed by both short- and long-range connections among differ-

ent brain regions. Moreover, in most neuroimaging studies, the dimension of functional

and structural connectivity data (or L) can be much larger than the number of subjects,

which varies from several dozens to a few thousands. Specifically, for the rfMRI data set

from ADNI, we have n = 153 and each connectivity matrix L contains V (V − 1)/2 = 6670

unique elements for V = 116. There is a considerable inter-subject spatial variability due to

natural variability, striking neuroanatomical variations, different conditions, and different

subject groups.

In the current literature, there are two major approaches to the group analysis of func-

tional connectivity data, including univariate methods and graph theoretic methods. The

graph theoretic methods consist of calculating graph theoretic summaries (i.e., girth, diam-

eter, modularity, small-worldness) of the entire graph for each subject and fitting linear (or

nonlinear) regression models with these summaries as responses. A key limitation of the

graph theoretic methods is that it cannot reveal subtle differences at both sub-network and

nodal levels. The most popular univariate approaches involve fitting a regression model,

such as linear regression, to association measures (e.g., correlation and partial correlation)

from all subjects at each edge, and then generating a statistical network map of test statis-

tics and p−values across all edges. One fundamental issue of such univariate methods is

to correct for multiple comparisons due to the large number of network edges when V is

relatively large. Therefore, these univariate methods often suffer from the low statistical

power of detecting from weak to moderate signals [17], even though there are some network

analogues of cluster-based thresholding methods, such as the network-based statistic and

spatial pairwise clustering methods. So, alternative connectivity analysis methods are crit-
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ically needed for understanding the complex organization of brain network, while achieving

dimension reduction.

There is a great interest in developing statistical models that explicitly delineate the

conditional distribution of L given x, that is, p(L|x). Ideally, such model should account

for the complex topological structure of networks, while flexibly assessing the effects of

multiple variables of interest and local network features. For a single network, popular

models, including exponential random graph models, stochastic block models, and latent

space models, were primarily developed for binary networks, whereas their extensions to

weighted networks remain in their infancy. Little has been done on relating weighted

networks with various covariates of interest such as disease status and time due to additional

computational and methodological challenges.

The aim of this paper is to propose Bayesian low-rank graph regression models with ma-

trix responses and clinical covariates. Our BLGRM can be regarded as a novel extension of

the hierarchical eigenmodel for pooled covariance matrices [15], tensor decomposition [18],

and standard linear model. The key idea of LGRM is to find an intrinsic low-dimensional

subspace for all subjects, denoted as B. Such B not only allows us to dramatically re-

duce dimension, but also characterizes the organization of brain connection maps across

subjects at a system level. We further represent each graph response by using a R × R

subject-specific coefficient matrix (Λi), while preserving an individual network structure of

the low-dimensional eigenspace. One more intriguing part is that we introduce a hierarchi-

cal structure of Λi in order to incorporate the effects of clinical/demographic covariates on

graph responses. Due to weak identifiability and high posterior dependence among param-

eters of our decomposition model, BLGRM suffers from poor mixing and slow convergence

of MCMC samplers. We adapt a parameter expansion approach to our graph regression

model (PX-BLGRM) to address the issues. Based on this formulation, an efficient Markov

chain Monte Carlo (MCMC) algorithm is used to perform posterior computation. We take a
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Bayesian approach to estimate the parameters involved in B and the regression coefficients

associated with covariates. We examine if effects of covariates of interest are important on

explaining graph responses by utilizing highest posterior density (HPD) intervals.

The rest of this paper is organized as follows. In Section 2, we introduce BLGRM in

details and present its Bayesian estimation procedure. In Section 3, we present simulation

results to evaluate the finite sample performance of the estimation procedure. In Section

4, we apply BLGRM to the ADNI dataset discussed above in order to address (Q1)-(Q2).

Section 5 presents concluding remarks.

2 Bayesian Low-rank Graph Regression Models

2.1 Model Specification

We consider network data from n independent subjects in ADNI. For the i-th subject,

we observe a p × 1 vector of predictors, denoted as xi, and a graph, denoted as Li =

(Li(g,g′))g,g′≤V , corresponding to V vertexes. Without loss of generality, it is assumed that

Li is symmetric, that is, Li(g,g′) = Li(g′,g) holds for all g, g′ ≤ V .

Our BLGRM consists of two key components, including a common component model

and a regression model. The common component model is given by

Li(g,g′) =
R∑
r=1

R∑
s=1

βr,gλi(r,s)βs,g′ + εi(g,g′), (1)

where εi(g,g′) are measurement errors, and λi(r,s) as subject specific coefficients can be non-

zero even for r 6= s. Moreover, B = [β1, . . . ,βR] is a V × R orthogonal matrix and

the common eigenmap across all subjects, where βs = (βs,g)g≤V is an orthonormal basis

for s = 1, . . . , R. The subject-specific matrix Λi =
[
λi(r,s)

]
r,s=1,··· ,R preserves an intrinsic

network structure in the low-dimensional space spanned by the columns of B. Equation
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(1) can be written in a matrix form as follows:

Li = BΛiB
′ + εi, (2)

where εi = (εi(g,g′)). For the symmetric graph, our regression model assumes that

λi(r,s) = λi(r,s) = fr,s(xi) + δi,(r,s), (3)

where δi,(r,s) are measurement errors and fr,s(xi) is an nonparametric or parametric function

of xi. A simple example is to set fr,s(xi) = xTi γr,s. In general, one may choose a set of

basis functions, say {φk(xi)}k≤K and then approximate fr,s(xi) by
∑K

k=1 φk(xi)γk(r,s).

Our BLGRM based on (2) and (3) has at least four unique features. First, it achieves

substantial dimension reduction by reducing from V (V −1)/2 to around V R+R(R+1)/2 for

each subject to deal with high-dimensionality of connectivity matrices. Second, the R eigen-

maps βr = {βr(g) : g ∈ G} can be considered as independent networks of vertices that char-

acterize the latent organization of connectivity structures across subjects at a system level.

Then, the subject-specific coefficient matrix Λi preserves an individual network structure in

the low-dimensional space spanned by the eigenmaps. It enables us to construct an under-

lying relational structure among brain areas and to reduce heterogeneity of functional con-

nectivity in the low-dimensional space. Third, ηi,r = {ηi,r(g) =
∑R

s=1 βs(g)λi,(s,r) : g ∈ G}

delineate individual organization of connection maps between vertices across R different
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latent networks. One more intriguing part is that we assume a hierarchical structure within

a prior of Λi in order to estimate effects of clinical/demographic covariates. Our method

facilitates estimation of the effects of covariates on the Λi matrices while decomposing the

connectivity structure within MCMC iterations. By considering a diagnostic indicator as

a covariate, e.g., Alzheimer’s disease or cognitively normal, local differences in functional

connectivity can be detected. Also, this hierarchical structure allows the decomposition

to be supervised by average covariates of subjects. Thus, the estimated eigenmap B not

only explains variation of the connectivity across subjects but also takes into account for

interrelation between covariates and connectivity.

Details for a Bayesian approach will be followed in the next section.

2.2 Bayesian Approach with Standard Priors

In order to estimate parameters of interest, we take a Bayesian approach. The full

posterior distribution is proportional to

π(Λ,B, σ2, σ2
0|L;X) ∝ p(L|Λ,B, σ2)π(Λ|Γ, σ2

0;X)π(Γ|σ2
γ)π(B)π(σ2)π(σ2

0)π(σ2
γ).

We assume that the measurement errors εi(g, g
′) follow i.i.d. symmetric Normal distribution

[28] with the mean 0 and the variance σ2. For the pre-specified number of eigenvectors R,

the likelihood of L1, · · · ,Ln can be written by

p(L1, · · · ,Ln|B,Λ1, · · · ,Λn) =

(
1√

2πσ2

)nV (V+1)/2 n∏
i=1

exp

[
− 1

2σ2
tr
((
Li −BΛiB

′)2)] .
To ensure identifiability of the decomposition model, we assume that the eigenmap B is

a lower triangular matrix [11]. Also, the number of eigenvectors R should be chosen such

that V R−R(R− 1)/2 + nR(R + 1)/2 ≤ nV (V + 1)/2. We assume the following priors

βir ∼ N
(
0, τ−1r φ−1ir

)
, 1 ≤ i ≤ V, 1 ≤ r ≤ min(i, R)

φir ∼ Gamma(1, a0/2), a0 ∼ Gamma(a1, a2), π(τr) = 1/τr.
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π(Λ1, · · · ,Λn|∆1, · · · ,∆n, σ
2
0) ∝

n∏
i=1

exp

[
− 1

2σ2
0

tr
(
(Λi −∆i)

2
)]

π(Γ) ∝ exp

[
− 1

2σ2
γ

tr (Γ′Γ)

]
, σ2 ∼ IG(b1, b2), σ

2
γ ∼ IG(c1, c2),

where vech(∆i) = Γ′xi =
[
x′iγ1,x

′
iγ2, · · · ,x′iγq

]′
, q = R(R + 1)/2. The regression covari-

ates for the i-th subject are denoted by xi = (1, x1, · · · , xp−1)′ and the regression coefficients

are given by Γ = [γ1, · · · ,γq] = [γj]
q
j=1, where γj = (γ0j, · · · , γ(p−1)j)′. For lower triangu-

lar elements of B, we adapted Bayesian lasso priors [27] for each column to induce sparse

eigenmap loadings for each eigenvector.

2.3 Parameter-Expanded Model

Even with the identifiability constraints, our proposed model suffers from poor mixing

and slow convergence of MCMC samplers due to weak identifiability and high posterior

dependence of B and Λi’s. For better identification of parameters, we fix σ0, the scale

of Λi, as 1. We adapt a parameter expansion approach to our graph regression model

to diminish posterior dependence between B and Λi’s. Parameter expansion has been

proposed by Liu et al. [23] for computational efficiency of expectation-maximization (EM)

algorithms by introducing a parameter-expanded model with overparameterized parame-

ters. The parameter expansion approach also improves convergence and mixing of MCMC

samplers and reduces high posterior dependence among parameters [24, 10, 12]. Ghosh and

Dunson [12] proposed parameter expansion in Bayesian factor analysis to weaken posterior

dependence of parameters and to induce heavier-tailed priors for factor loadings. They

showed improved mixing of parameters that were transformed back to the original model

from the parameter-expanded model.
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We rewrite the original model (2) as the following parameter-expanded model,

Li = B∗Λ∗iB
∗′ + εi, (4)

B = s(B) ◦B∗Ψ−1/2,

Λi = d(B)Ψ1/2Λ∗iΨ
1/2d(B),

where Ψ = diag(ψ1, · · · , ψR), d(B) = diag (sign(β11), · · · , sign(βRR)), and s(B) is a V ×R

matrix whose every row is [sign(β11), · · · , sign(βRR)]. The sign of diagonal elements in B is

accordingly multiplied for the indentifiability purpose. In a similar manner of the original

setup, we assume the following priors for the model (4).

β∗ir ∼ N
(
0, τ−1r φ−1ir

)
, 1 ≤ i ≤ V, 1 ≤ r ≤ min(i, R)

φir ∼ Gamma(1, a0r/2), a0r ∼ Gamma(a1, a2), π(τr) = 1/τr

π(Λ∗1, · · · ,Λ∗n|∆∗1, · · · ,∆∗n,Ψ) ∝
n∏
i=1

exp

[
−1

2
tr
{

((Λ∗i −∆∗i )Ψ)2
}]

π(Γ∗) ∝ exp

[
− 1

2σγ2
tr
(
Γ∗′Γ∗

)]
, σ2 ∼ IG(b1, b2), σ

2
γ ∼ IG(c1, c2)

ψi ∼ Gamma(νa, νa), i = 1, · · · , R,

where vech(∆∗i ) = Γ∗′xi =
[
x′iγ

∗
1,x

′
iγ
∗
2, · · · ,x′iγ∗q

]′
, Γ = Γ∗(d(B)Ψ1/2)⊗s (d(B)Ψ1/2), and

q = R(R + 1)/2.

Then, the posterior distribution for each parameter is given by

π(B∗|•) ∝ exp

[
− 1

2σ2

n∑
i=1

tr
((
Li −B∗Λ∗iB∗

′)2)− 1

2

R∑
r=1

V∑
i=r

(β∗ir)
2τrφir

]
, (5)

vech(Λ∗i |•) ∼ N (µi,S) , (6)

where

10



µi = SDsvec (P i) , S =

(
D(Q⊗s Q)D

σ2
+D(Ψ⊗s Ψ)D

)−1
,

Q = B∗′B∗, P i =
1

σ2
B∗′LiB

∗ + Ψ∆∗iΨ,

D = diag( 1,
√

2, · · · ,
√

2︸ ︷︷ ︸
R elements

, 1,
√

2, · · · ,
√

2︸ ︷︷ ︸
(R− 1) elements

, · · · , 1︸︷︷︸
1 element

).

The regression parameters are sampled from the following posterior:

vec(Γ∗|•) ∼ N
(
µγ,Sγ

)
, (7)

where

µγ = Sγ

n∑
i=1

(xi
′vech(ΨΛ∗iΨ)′) , Sγ =

(
n∑
i=1

{(D(Ψ⊗s Ψ)D)⊗ xix′i}+
1

σ2
γ

I

)−1
.

The hyper-parameters are sampled based on the following posterior distributions:

φir ∼ Inverse−Gaussian
(√

a0r

τrβ∗ir
2 , a0r

)
(8)

τr ∼ Gamma

(
V − r + 1

2
,

∑V
l=r φlrβ

∗
lr
2

2

)
(9)

a0r ∼ Gamma

(
a1 + (V − r + 1), a2 +

∑V
l=r 1/φlr

2

)
(10)

σ2 ∼ IG

(
b1 +

nV (V + 1)

4
,
1

2
tr

(
n∑
i=1

(Li −B∗Λ∗iB∗
′)2

)
+ b2

)
(11)

σ2
γ ∼ IG

(
c0 +

pR(R + 1)

4
,
1

2
tr
(
Γ∗′Γ∗

)
+ c1

)
, (12)

and we employ slice sampling to get a posterior sample from

(ψ, · · · , ψR) ∝ π(Ψ)π(Λ∗1 · · · ,Λ∗n|Ψ). (13)

In summary, the posterior sampling proceeds as follows.
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1. Employ slice sampling to get a posterior sample from π(β∗g|B∗(−g), •) in (5) after a

certain amont of burn-in iterations.

2. Update Λ∗i generated from N (µi,S) in (6).

3. Update Γ∗ generated from N
(
µγ,Sγ

)
in (7).

4. Update hyperparameters from (8)-(13).

The number of eigenvectors R is chosen by a Bayesian information criterion (BIC) and

the reconstruction error is measured by the ratio of Frobenius norms:

error =
1

n

n∑
i=1

||Li − B̂Λ̂iB̂
′
||F

||Li||F
. (14)

3 Simulation study

In this section, we conduct simulation studies to illustrate the performance of the

parameter-expanded BLGRM. We assume that there are 100 subjects i = 1, · · · , 100 and

their response data are simulated from the underlying model Li = BΛiB + εi, where Li

denotes any symmetric matrix response. We applied our proposed method to estimate

B,Λ1, · · · ,Λn and to recover L1, · · · ,Ln. We run 5,500 MCMC iterations with 500 burn-

in. We repeated the simulation 50 times under four different scenarios.

In section 3.1, we examine if the true number of eigenvectors is correctly chosen by

BIC. We investigate two different scenarios: there is a common basis B with rank 3 (sce-

nario 1), and there are two different bases B1 and B2 for two subject groups, with rank

3 respectively (scenario 2). We don’t include any covariates xi in this section. In order to

compare the performance of the proposed method with other competing methods, in sce-

nario 1, we consider a frequentist version of LGRM, PARAFAC, and three-way DEDICOM,

focusing on the reconstruction error defined in (14). PARAFAC and three-way DEDICOM
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can be regarded to decompose a multiple (symmetric) matrices into a common basis and

specific coefficients, while they impose more constraints than our method does. PARAFAC

decomposes a tensor into a sum of component rank-one tensors such as

L ≈
R∑
r=1

ur ◦ sr ◦ qr,

where L is a V ×V ×n tensor, and qr ∈ Rn, ur ∈ RV , sr,∈ RV . Because Li is symmetric,

we set ur = sr. Here, we reformulate the PARAFAC model to be comparable with our

model as following:

Li ≈
R∑
r=1

qir(ur ◦ ur) for i = 1, · · · , n.

Then ur plays a role of the common basis and qir can be considered as a subject-specific

scalar coefficient. Three-way DEDICOM is an extended version of the DEDICOM model so

that it can incorporate a third mode of the data [14] and decompose asymmetry matrices.

Here, we only consider symmetric Li ∈ RV×V for comparison. Then the model can be

written as

Li ≈ ADiQDiA
′ for i = 1, · · · , n,

where latent components A ∈ RV×R, interaction between different components Q ∈ RR×R,

a diagonal matrix Di ∈ RR×R. The r-th diagonal element in Di represents the i-th subject

specific weight of the r-th latent component. Three-way DEDICOM is similar to our

decomposition model in the sense that if Λi can be decomposed as DiQDi, then the

center parts of two decomposition models are equivalent. Thus, DEDICOM is a more

constrained version of our decomposition model. We use a Python module ”scikit-tensor”

to calculate three-way DEDICOM available in https : //github.com/mnick/scikit−tensor.

For calculation of PARAFAC decomposition, we used the N-way Toolbox in MATLAB.

The frequentist LGRM estimates the parameter matrices in (2) by minimizing the

Frobenius norm of Li−BΛiB
′ using iterative optimization steps. This optimization prob-
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lem is solved by adapting low rank approximation techniques proposed by Ye [34]. In detail,

we consider the following optimization problem

min
B,Λi

n∑
i=1

||Li −BΛiB
′||2F such that B′B = IR. (15)

Then,

Λ̂i = B̂LiB̂
′
,

where the eigenmap B can be estimated from the following iterative optimization steps.

Under Λi = BLiB
′, the above minimizing problem is equivalent to maximizing

n∑
i=1

||B′LiB||2F =
n∑
i=1

tr(B′LiBB
′LiB)

≈
n∑
i=1

tr(B′LiB0B0
′LiB),

where B0 is the B matrix from the previous iteration. Then B can be estimated by the

following iterative steps:

1. Let B0 be the B matrix from the previous iteration.

2. Calculate Q =
∑n

i=1LiB0B0
′Li.

3. Compute the R eigenvectors {φi}Ri=1 of Q corresponding to the largest R eigenvalues.

4. Set B = [φ1, φ2, · · · , φR].

5. Repeat the above iterations until it converges.

6. Calculate Λ̂i = B̂LiB̂
′
, for i = 1, · · · , n.

Also, the variance component σ2 can be estimated by the MLE:

σ̂2 =
2

nV (V + 1)
tr

(
n∑
i=1

(
Li − B̂Λ̂iB̂

′)2)
.
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Section 3.2 discusses the accuracy of estimation for regression coefficients in BLGRM.

We consider binary (scenario 3) and continuous (scenario 4) covariates with an intercept.

Reconstruction errors are calculated as well.

3.1 Simulation 1

A. Scenario 1

We generate all simulation data sets from Li = BΛiB
′+εi. There exist 3 true underly-

ing common eigenmaps (R = 3). We assume that B and Λi are 50 × 3 and 3 × 3 matrices,

respectively. The eigenmaps, subject-specific coefficient matrices, and measurement errors

are generated according to:

βglk ∼ N(0, 1), l = 1, · · · , 50, k = 1, · · · , R, (16)

π(ε1, · · · , εn) =
n∏
i=1

exp

[
−1

2
tr
(
ε2i
)]
, π(Λ1, · · · ,Λn) =

n∏
i=1

exp

[
−1

2
tr
(
Λ2
i

)]
.
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Figure 1: Panel (a) shows the first raw data matrix L1 in the first simulation data set,

while panel (b) shows the approximated matrix by the proposed method.
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(a) Raw structure (b) Approximated structure

Figure 2: Panel (a) shows the first raw data matrix L1 in the first simulation data set,

while panel (b) shows the approximated matrix by the proposed method.

In order to select the number of common eigenvectors in BLGRM and LGRM, we used

BIC. BIC perfectly selects the true number of eigenvectors, 3. Core consistency diagnostic

has been used for choosing the proper number of components for the PARAFAC model

[2]. For the three-way DEDICOM, there is no specific way to determine the number of

components to examine approximation performances. We plot the reconstruction errors as

increasing the number of eigenvectors (components). Figure 1 shows the simulation results

based on 50 replications. The (Monte Carlo) error bars are depicted with the Monte Carlo

mean of reconstruction errors. Core consistency diagnostic gives 2 as median of the ad-

equate numbers of components for PARAFAC based on 50 repetitions, while 3 is always

chosen by BIC for BLGRM and LGRM. One can see that the BLGRM and LGRM ap-

proximate the raw data matrices fairly well with the true number of eigenvectors, while the

reconstruction errors tend to be slightly increasing as the number of eigenvectors increases.

The PARAFAC model achieves satisfactory approximation performance when the number

of components is 6, while its core consistency diagnostic recommends to use 2. On the other
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hand, the core consistency chosen model of PARAFAC gives about 0.7 reconstruction error

in average, which is much larger than those BIC chosen BLGRM and LGRM give. And the

reconstruction errors of three-way DEDICOM gradually decrease as the model complexity

increases. Also, its variability is very high compared to the other competing methods as

suggesting its unstable performance. BLGRM performs better as the decomposition model

gets more complex than LGRM does. MCMC iterations and burn-in in slice sampling

could provide BLGRM more opportunity for better approximation. Reconstruction error

and Figure 2 demonstrate that our decomposition method can approximate the raw matrix

well.

B. Scenario 2

We generate other simulation data sets from Lgi = BgΛiBg
′ + εi, g = 1, · · · , G, i =

1, · · · , ng, where n =
∑G

g=1 ng. We consider σ = 1, R = 3 and two groups, i.e., G = 2.

Bg = [βg1, · · · ,β
g
R] and Λi are generated from

βglk ∼ N(0, 1), l = 1, · · · , 50, k = 1, · · · , R,

π(Λ1, · · · ,Λn) =
n∏
i=1

exp

[
−1

2
tr
(
Λ2
i

)]
.

Because we have different (independent) eigenmaps for two groups, the total number of

common eigenvectors across subjects must be 6.
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(a) Raw structure (b) Approximated structure

Figure 3: Figure (a) shows the first raw data matrix Li in the first simulation data set,

while figure (b) shows the approximated matrix by the proposed method.

The true number of eigenvectors is perfectly recovered by BIC. The Monte Carlo mean

and standard deviation of reconstruction errors are given by 0.059 and 0.021 respectively.

Figure 3 demonstrate that our decomposition method approximates the raw matrix well,

while it has a slightly larger reconstruction error (Monte Carlo mean=0.036, Monte Carlo

s.d.=0.010) than the scenario 1.

3.2 Simulation 2

This simulation study aims to examine if the coefficient values are estimated well by the

proposed method. We measure the estimation error for Γj (j = 1, 2) in the original space,

i.e., estimation error is defined by errorγj =
||BΓjB

′
−B̂Γ̂jB̂

′
||F

||BΓjB
′
||F

. Also we check convergence

of MCMC outputs by using trace plots.

We generate all simulation data sets from Li = BΛiB
′ + εi, where R = 3. Set σ = 1
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Table 1: Estimation errors for Γ0 and Γ1 in the two different cases. They are mean

of estimation errors from 50 replications and the corresponding Monte Carlo standard

deviations are recorded in the parentheses.

Scenario 3 Scenario 4

errorγ0 0.074 (0.016) 0.038 (0.012)

errorγ1 0.141 (0.036) 0.105 (0.040)

B = [β1, · · · ,βR] and Λi are generated from

βglk ∼ N(0, 1), l = 1, · · · , 50, k = 1, · · · , R,

π(Λ1, · · · ,Λn) =
n∏
i=1

exp

[
−1

2
tr
(
(Λi −∆i)

2
)]
.

Set the regression coefficients as

Γ1 =

1 1 1

1 1 1

1 1 1

 , Γ2 =

0 4 0

4 0 4

0 4 0

 .

A. Scenario 3

The scenario 3 considers a binary covariate xi = [1, x1i], where x1i ∼ B
(
1
2

)
and

calculate vech(∆i) = Γ′xi, Γ = [vech(Γ1), vech(Γ2)],

B. Scenario 4

In this scenario we consider a continuous covariate, xi = [1, x1i], x1i ∼ N (0.5, 1), where

vech(∆i) = Γ′xi, Γ = [vech(Γ1), vech(Γ2)].
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Figure 4: Trace plot for posterior samples of B elements. It shows rapid and nice mixing

and convergence of MCMC chains.

Table 1 shows estimation errors for Γ0 and Γ1 in the two different cases. They are

mean estimation errors with 50 replications with the corresponding standard errors in the

parentheses. One can see that the coefficients are estimated satisfactorily. Figure 4 shows

rapid and nice mixing and convergence of MCMC chains for randomly chosen 10 elements

in B matrix in the scenario 4.

4 Application to Alzheimer’s Disease

Altered brain connectivity has been considered as a critical factor to explain cognitive

decline in Alzheimer’s disease (AD) [5, 6]. It has been reported that some regions in mild

AD brains have abnormal functional connectivity with other brain regions including medial

prefrontal cortex (MPFC), ventral anterior cingulate cortex (vACC), right inferotemporal

cortex, right cuneus extending into precuneus, left cuneus, right superior and middle tem-

poral gyrus and posterior cingulate cortex (PCG or PCC) through a seed based approach

using Fisher’s z-transformation and t-tests [31]. Wang et al. [30] showed that AD patients

had decreased connectivity between prefrontal and parietal lobes and increased within-
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lobe functional connectivity by whole brain ROI based t-tests. But they conducted 6670

(116*115/2) multiple testing at 0.01 significance level without any correction, their results

therefore suffered from severe false positive problems.

To overcome limitations of the current methods, we applied our proposed method and

tested group differences among normal control (NC), mild cognitive impairment (MCI), and

AD patient groups. Instead of the raw correlation matrices, we used Fisher’s z-transformed

correlation matrices, which would make the data to be more suitable to our model assump-

tions. The transformed correlation coefficient ranges from negative infinitiy to positive

infinity, while the original sign is preserved. We considered 4 covariates and the intercept:

gender (γ1), age(γ2), MCI=1(γ3), and AD=1(γ4). By using HPD intervals of γ3, γ4, γ4−γ3,

we determine if there is any group difference in their connectivity patterns.

4.1 Data Acquisition and Pre-processing

For resting state fMRI, the imaging protocol is Field Strength=3.0 tesla; Flip Angle=80.0

degree; Manufacturer=Philips Medical Systems; Matrix X=64.0 pixels; Matrix Y=64.0 pix-

els; Mfg Model=Intera; Pixel Spacing X=3.3125 mm; Pixel Spacing Y=3.3125 mm; Pulse

Sequence=GR; Slices=6720.0; Slice Thickness=3.313 mm; TE=30.001 ms; TR=3000.0 ms;

to obtain 140 volumes.

The fMRI data was pre-processed with the following steps: 1) discarding the first 10

time points, 2) slice timing, 3) head motion correction, 4) intensity scaling of each fMRI scan

after motion correction to yield a whole-brain mean value of 10000, 5) temporally band-pass

filtering (0.01 Hz-0.08 Hz), 6) regression out of a set of nuisance signals including signal

averaged over the white matter, signal averaged over the cerebrospinal fluid, global signal

averaged over the whole-brain, and six motion parameters, 7) nonlinear normalization

into Montreal Neurological Institute (MNI) space with resolution 333mm3 using SPM8;

8) spatially smoothing with a 6 mm full width at half maximum Gaussian kernel. The
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Table 2: We summarized demographic information at the baseline of the 153 ADNI sub-

jects. For an age variable, its mean and standard deviation (mean± sd) were presented. For

a binary variable, gender, the count and the percentage (in parentheses) of male subjects

were shown.

Total NC MCI AD

(N=153) (N=54) (N=75) (N=24)

Gender (male) 75 (49.02%) 25 (46.29%) 38 (50.67%) 12 (50.00%)

Age (in years) 72.44 ± 6.62 72.92 ± 6.06 71.78 ± 6.81 73.40 ± 7.27

nonlinear normalization of fMRI data was implemented using DARTEL of SPM8 with the

deformation fields of their co-registered T1-weighted images.

The data used in this study was obtained from Alzheimer’s Disease Neuroimaging

Initiative (ADNI). The ADNI study has aimed to detect and monitor the early stage

of Alzheimer’s disease (AD) by investigating serial magnetic resonance imaging (MRI),

positron emission tomography (PET), genetic, biochemical biomarkers, and neuropsycho-

logical and clinical assessment. For up-to-date information, see www.adni-info.org.

We used 153 subjects from ADNI-1, ADNI-GO, and ADNI-2. There were four baseline

diagnostic categories: normal aging/cognitively normal (CN), significant memory concern

(SMC), MCI, and AD. The ADNI described that SMC subjects had a concern and exhib-

ited slight forgetfulness, while their cognitive scores were within normal range. As their

cognition was normal and forgetfulness was not consistent, SMC subjects were combined

with CN subjects. We called this combined group “normal control (NC)” from now on.

The demographic information at baseline was summarized in Table 2. In the whole data,

there were 75 male and 78 female subjects. Their average age was 72.44 years with standard

deviation of 6.62 years. There were 25 NC male subjects and the average age of the NC

subjects was 72.92 years with 6.06 years standard deviation. Among 75 MCI patients, 38
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patients were male. The average age of the MCI subjects was 71.78 years with 6.81 years

standard deviation. For AD patients, 12 of them were male patients, while their average

age was 73.40 years with standard deviation of 7.27 years.
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Figure 5: Process to estimate functional connectivity from resting-state fMRI data.

Figure 5 shows the overall procedure to calculate the resting-state functional connectiv-

ity from fMRI data. We used an Automated Anatomical Labeling (AAL) atlas, a widely

used manual macroanatomical parcellation, and finally got 116 ROIs for a single subject.

We used AFNI package of [4] to compute the average BOLD signal over a ROI of all voxel

values.
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4.2 Data Analysis Results

(a) Standardized (b) Thresholded

Figure 6: Figure (a) shows the estimated B matrix with standardized scale, while figure

(b) shows the standardized B matrix after thresholding.

In order to find the proper number of eigenvectors, we use BIC and chose the number of

eigenvectors whose corresponding BIC was the smallest. We set the number of eigenvectors,

R to be 14. We run BLGRM with 5,500 MCMC iterations with 500 burn-in. We use the

same setting for hyperparameters as in the simulation studies.

Figure 6 shows the estimated B matrix. For better presentation, we plotted the stan-

dardized B matrix and the thresholded matrix (>1.96). Interestingly, the 1st eigenvector

mainly consists of the right precentral gyrus, the right superior parietal gyrus, the right

supramarginal gyrus, the right supplementary motor area, the right postcentral gyrus, the

bilateral paracentral lobule, and the right inferior parietal gyrus. The most of the main

components (The superior parietal, supramarginal, postcentral, and inferior parietal gyrus,

and the paracentral lobule) are all within the parietal lobe. The parieral lobe merges sensory
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Figure 7: Shows how the raw correlation matrix of the first subject can be decomposed by

the BGSC.

information among heterogeneous sources, such as proprioception, mechanoreception in the

somatosensory cortex, and the dorsal stream of the visual system. A recent research finds

that specific parietal regions including posterior parietal cortex contribute to retrieval tasks

of episodic memory [29]. Thus, this eigenvector could represent brain functions of sensory

information integration and episodic retrieval in a system level. The 3rd eigenvector has

large weights on the left supplementary motor area, the left rolandic operculum, bilateral

medial superior frontal, left superior frontal, left middle frontal, left triangulargyrus inferior

frontal, and right superior occipital gyrus. It most consists of brain regions in pretemporal

lobe. The prefrontal lobe plays a central role in cognitive control, “the ability to take charge

of ones actions and direct them towards future, unseen goals” [26]. Also its impairment is

replicated to be associated with antisocial behavior [33]. Thus, this eigenvector describes

individual’s cognitive control and behavior. The main components of the 13th eigenvector

are the bilateral precuneus and the bilateral posterior cingulate gyrus. This eigenvector
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represents default mode network, because PCG/PCUN and angular gyrus are functional

hubs of default mode network, which is disrupted in people with AD, and autism spectrum

disorder [1].
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Figure 8: Shows the posterior means marked by “∗” and the corresponding 95% HPD

intervals (each vertical line) of vech(Γ4 − Γ3). There are 4 pairs of eigenvectors that have

important group differences, as their HPD intervals do not include 0. See the purple lines.

Figure 7 shows how well the raw correlation matrix of the first subject is approximated

by the proposed method (with the total reconstruction error=0.67). We also examine the

estimated regression coefficient Γ4−Γ3 that represents the effect of a difference of MCI and

AD patients on their functional connectivity maps. Table 8 shows the estimated regression

coefficients by the posterior means and the correspondig 95% HPD intervals. We could

identify important group differences of some connectivity in the eigenspace by examining

the HPD intervals. There are 4 HPD intervals that do not include 0. It suggest us that the
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4 pairs of eigenvectors have important group differences. Based on our interpretation of

the estimated B matrix, for example of the pair of the 1st and 3rd eigenvectors, MCI and

AD patients have different functional connectivty among brain regions of sensory informa-

tion integration/episodic retrieval and cognitive control/behavior. For the pair of the 1st

and 13th eigenvectors, there is a group difference in terms of connections among sensory

information integration/episodic retrieval regions and default mode network.

Figure 9: − log10(p) of univariate (ROI-wise) two-sample t-test for AD and MCI groups.

On the other hand, we could not find any significant group differences for AD and MCI

patients by using ROI-wise univariate two-sample t-test for correlation coefficients after

Fisher’s z-transformation. Figure 9 presents − log10(p) of the two-sample t-tests for AD

and MCI groups. After Bonferroni correction, − log10(p) should be greater than 5.13 at 0.05

significance level, or it should be greater than 1.30 without any multiple testing correction.

But we could not identify any significance group difference with/without correction.

In order to see which ROIs have functional connectivity differences among MCI, and
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AD, we map estimated coefficients Γ̂ from the eigenspace to the original ROI space. We

use B̂ and “sparse” Γ̂ to calculate the coefficient matrix by the following steps:

1. Estimate B and Γ by the proposed method.

2. Calculate 95% HPD interval of all the elements in Γ and find unimportant elements

(pairs of brain regions) whose HPD intervals include 0.

3. Set the corresponding coefficient values to be 0. Denote the sparse Γ̂ as Γ̃.

4. Use B̂Γ̂B̂
′

as estimated coefficients for the ROI space.

29



Figure 10: Shows which pairs of two ROIs have different connectivity between MCI and

AD groups.
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Figure 11: Shows which pairs of two ROIs have different connectivity between MCI and

AD groups.

By using the above steps, we mapped the estimated coefficients from the eigenspace to

the original ROI space. Then we plotted the estimated regression coefficients on the brain

template using BrainNet Viewer of Xia et al. [32]. The first 5% largest effect sizes were

selected to be shown in the figures. Figure 10 shows which brain regions have stronger (or

weaker) positive connectivity for AD patients compared to MCI patients, while Figure 11

shows which brain regions have different negative connectivity pattern between MCI and

AD groups. In Figure 10, the red line represents the estimated coefficient value γ4−γ3 > 0,

which implies that AD patients have a stronger positive connection than MCI subjects
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between the corresponding two ROIs. The blue line represents the estimated coefficient

value γ4− γ3 < 0 indicating that AD patients have a weaker positive connection than MCI

subjects between the corresponding two ROIs. For the negative connectivity, in Figure 11,

the red line implies that AD patients have a stronger negative connection than MCI subjects

between the corresponding two ROIs. The blue line indicates that AD patients have a

weaker negative connection than MCI subjects between the corresponding two ROIs. It is

observed that various brain regions have weaker or stronger connections for AD patients,

which implies that AD patients would have altered functional network compared to MCI

patients.

In order to examine functional connectivity differences between MCI and AD patients,

we focus on Figures 10, 11, and Tables 4 and 5. Note that the regression coefficients

have different interpretation depending on the sign of the average transformed correlation

coefficient in MCI patients. Table 4 shows selected regression coefficient estimates where

the average of transformed correlation coefficient in MCI patients is positive, while Table

5 presents selected coefficient estimates in the negative cases. We list some of regression

coefficients whose sizes are the top 5%.

Figure 4 tells us MCI and AD patients have different positive functional connectivity

among prefrontal, parietal, PCG/PCUN brain regions. The bilateral PCUN has weaker

positive connections between the right precentral gyrus, the right postcentral gyrus, the

right supramarginal gyrus, the right superior parietal gyrus, and the right paracentral lobe

for AD patients than MCI patients. AD patients have lower positive connectivity among

the right PCG and the right supramarginal gyrus gyrus, the right paracentral lobule, and

the right supplementary motor area than MCI patients do. Furthermore, the bilateral

PCUN has weaker negative connections between the right precentral gyrus, the right post-

central gyrus, the right supramarginal gyrus, the right superior parietal gyrus, and the left

brain regions in prefrontal lobe for AD patients than MCI patients. It implies disrupted
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connections for AD patients among default mode network, sensory information integration

, episodic memory retrieval, and cognitive behavior.

From Figure 5, one can observe that AD patients have altered negative connections

among prefrontal, parietal brain areas. We finds that AD patients have weaker negative

connections among the left superior frontal/middle frontal gyrus and parietal lobe including

postcentral, supramarginal, inferior parietal gyrus and paracentral lobule. It suggests that

AD patients have weaker negative connectivity between sensory information integration/

episodic memory retrieval and cognitive behavior/control.

On the other hand, our study suggests that there is a connectivity difference of para-

central gyrus with other brain regions including superior, middle, inferior frontal gyri (see

Tables 4 and 5). A fMRI study by Mason et al. [25] showed that, when stimuli from some

senses are deliberately reduced or removed, the mind recruits some brain regions includ-

ing the medial posterior cingulate, PCUN, PCL, the inferior frontal cortices, superior and

middle frontal gyri, and a cluster spanning dorsal medial frontal regions. These distributed

foci have temporal coherence and constitute a tightly coupled, organized neural network. It

may indicate that brain network differences between MCI and AD patients can be explained

by certain brain reaction to sensory deprivation.

5 Discussion

In this study, we proposed a BLGRM by taking a global approach to analyze brain func-

tional connectivity. It decomposes any symmetric data matrices with common eigenmaps

across subjects and the subject-specific coefficient matrix. We see that the subject-specific

coefficient matrix preserves an individual network structure in the low-dimensional space

spanned by the common factors. We took a Bayesian approach to estimate the underly-

ing factors, individual coefficient matrix, and some parameters involved in the prediction
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model for clinical outcomes. We assumed a hierarchical structure within the prior of Λi,

so that we could automatically estimate the effects of covariates on the Λi matrices within

MCMC iterations. Furthermore, the parameter-expansion approach was taken on our graph

regression model to reduce posterior dependence between B and Λi’s.

The simulation studies demonstrated that our method efficiently approximated the raw

symmetric matrix data with good MCMC mixing properties. We compared reconstruction

errors of our method with those of LGRM, PARAFAC, and three-way DEDICOM. Our

method efficiently approximated the raw data matrices by a fewer number of eigenvec-

tors than the other competing methods. Also the regression parameters for Li could be

recovered satisfactorily.

The ADNI real data analysis revealed that the bilateral PCUN/PCG had weaker con-

nections between parietal/pretemporal lobe for AD patients than MCI patients. It suggests

that AD patients have disrupted connections among brain regions involving default mode

network, sensory information integration, episodic memory retrieval, and cognitive behav-

ior. Also, there was a connectivity difference of paracentral gyrus with other brain regions

including superior, middle, inferior frontal gyri. This finding agreed with other functional

connectivity studies by [3, 21, 25, 31].

This study could provide a guideline to elucidate hidden pathology of neurological dis-

orders in a brain connectivity perspective. In clinical application, our method can be used

to (1) examine if normal subjects and patients (or among disease subtypes) have a different

functional connectivity structure and where the difference comes from. This exploratory

analysis allows better understanding of the underlying mechanism of a disorder, which fur-

ther may help to develop future treatments targeting some identified brain regions. Also,

altered connectivity can provide (2) diagnostic and prognostic information [7]. To incor-

porate clinical outcomes to measure diagnostic and prognostic status, our method can be

modified by reformulating the regression model (3) to use the clinical outcomes. Capturing
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disruption in functional connectivity can be important for better/earlier diagnosis of psy-

chiatric disorder. For example of ADHD, a subject is diagnosed as ADHD if the subject

meets the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. The test

result can be varied depending on interview environment, examiners and examinees. And

it is still subjective criteria. If abnormality of functional connectivity is a very early sign

to develop a disorder or a biomarker for prognosis, it will be promising to use the infor-

mation as an objective diagnostic/prognostic tool. One more intriguing suggestion is that

(3) abnormal functional connectivity will become prominent in neurogenetic studies [19].

While genetic factors are emerging in psychiatric disorder research, their effect size is very

small and their working mechanism still needs to be elucidated. Because brain organization

and function are influenced by genetic factors [20, 22] and brain information has relatively

large impact on disease progression, functional connectivity can be a mediator to explain

connection among genetic mutations and disorders.
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Table 3: AAL parcellation of the entire brain and their abbreviations used in this paper.

Abbreviation Name Classification

SFG Superior frontal gyrus Prefrontal Lobe

SFGM Superior frontal gyrus, medial Prefrontal Lobe

MFG Middle frontal gyrus Prefrontal Lobe

IFGOP Inferior frontal gyrus, opercular Prefrontal lobe

IFGT Inferior frontal gyrus, triangular Prefrontal lobe

PreCG Precentral gyrus Other frontal

SMA Supplementary motor area Other frontal

ROL Rolandic operculum Other frontal

ANG Angular gyrus Parietal lobe

IPL Inferior parietal gyrus Parietal lobe

PCG Posterior cingulate gyrus Parietal lobe

PCL Paracentral lobule Parietal lobe

PCUN Precuneus Parietal lobe

PoCG Postcentral gyrus Parietal lobe

SMG Supramarginal gyrus Parietal lobe

SPG Superior parietal gyrus Parietal lobe

CUN Cuneous Occipital lobe

SOG Superior occipital gyrus Occipital lobe

MOG Middle occipital gyrus Occipital lobe

CAU Caudate nucleus Corpus striatum

CRBL Cerebellum Cerebellum
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Table 4: Shows the effect of a group difference between MCI and AD on the following pairs

of brain regions (Regions 1 and 2). The average of transformed correlation coefficients in

the MCI group is positive.

Region1 Region2 Coeff

SFGM.R PreCG.R 0.064

SFGM.R Cau.R 0.069

SFGM.L SFG.L -0.063

SFGM.L PreCG.R 0.063

SFGM.L Cau.R 0.078

PCUN.R PreCG.R -0.089

PCUN.R PoCG.R -0.083

PCUN.R SMG.R -0.074

PCUN.R SPG.R -0.070

PCUN.R SFGM.L 0.063

PCUN.R IPL.R -0.065

PCUN.L PreCG.R -0.073

PCUN.L SFG.L 0.059

PCG.R SMG.R -0.065

PCG.R SMA.R -0.067

PCG.R PCL.R -0.065

Region1 Region2 Coeff

ANG.L SMA.L -0.075

ANG.L PCG.R 0.065

PCL.R CUN.R -0.068

PCL.R MOG.L -0.065

PCL.R CUN.L -0.065

PCL.R PCUN.R -0.063

PCL.R SOG.L -0.060

PCL.R CRBL8.L 0.064

PCL.R CRBL7b.R 0.064

PCL.R IFGT.L 0.064

PCL.R ROL.L 0.067

PCL.R SMA.L 0.071

PCL.R SFG.L 0.073

SMA.R IPL.L -0.059

SMA.R SPG.L -0.056

SMA.L IPL.L -0.060
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Table 5: Shows the effect of a group difference between MCI and AD on the following pairs

of brain regions (Regions 1 and 2). he average of transformed correlation coefficients in the

MCI group is negative.

Region1 Region2 Coeff

PCUN.R IFGT.L 0.079

PCUN.R SFG.L 0.081

PCUN.R MFG.L 0.089

PCUN.L MFG.L 0.071

PCG.R PreCG.R -0.090

PCG.R PoCG.R -0.081

ANG.R PreCG.R -0.075

ANG.L SMA.R -0.081

ANG.L SFG.R -0.073

PCL.R MFG.L 0.076

Region1 Region2 Coeff

SFG.L PoCG.R 0.079

SFG.L SMG.R 0.065

SFG.L IPL.R 0.068

SFG.L SPG.R 0.059

MFG.L PoCG.R 0.081

MFG.L SMG.R 0.065

MFG.L IPL.R 0.071

MFG.L SPG.R 0.059

MFG.L PCL.R 0.077

ANG.R SMA.R -0.080
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