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Abstract

We propose a Bayesian low-rank graph regression modeling (BLGRM) framework
for the regression analysis of matrix response data across subjects. This develop-
ment is motivated by performing detailed comparisons of functional and structural
connectivity data across subjects, groups, and time and relating connections to par-
ticular behavioral measures. The BLGRM can be regarded as a novel integration
of principal component analysis, tensor decomposition, and regression models. In
BLGRM, we find a common low-dimensional subspace for efficiently representing
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all matrix responses. Based on such low-dimensional representation, we can easily
quantify the effects of various predictors of interest, such as age and diagnosis sta-
tus, and then perform regression analysis in the common subspace, leading to both
substantial dimension reduction and much better prediction. We adapt a parameter
expansion approach to our graph regression model (PX-BLGRM) to address weak
identifiability and high posterior dependence among parameters in our decomposi-
tion model. Posterior computation proceeds via an efficient Markov chain Monte
Carlo algorithm. A simulation study is performed to evaluate the finite sample per-
formance of BLGRM and its comparison with several competing approaches. We
apply BLGRM to the rest functional magnetic resonance imaging (rfMRI) data set
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

Keywords: Connection matrix; Covariate; Human Connectome; Low rank graph regression;
Markov chain Monte Carlo.



1 Introduction

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (http : //www.adni —
info.org/) as a groundbreaking “Big Data” project for Alzheimer’s disease (AD) has col-
lected imaging, genetic, clinical, and cognitive data from thousands of subjects since 2004.
An important question of interest for ADNI is to quantify the clinical, cognitive, imag-
ing, genetic and biochemical biomarker characteristics of the entire spectrum of AD as
the pathology evolves from normal aging (NC), to mild cognitive impairment (MCI), to
dementia or AD. This paper is motivated by the joint analysis of rest functional magnetic
resonance imaging (rfMRI) data and clinical and behavioral variables from n = 153 sub-
jects in the ADNI study. After applying a standard preprocessing pipeline, we obtained
a 116x116 rfMRI correlation matrix from each of the 153 subjects. We are particularly

interested in addressing two questions:

e (Q1) the first one is to derive functional-connectivity based brain biomarkers for

classifying AD, NC, and MCI groups;

e (Q2) the second one is to identify a common low-dimensional subspace that charac-

terizes the major variations of brain functional network across subjects and groups.

Statistically, these questions of interest can be formulated as the use of a vector of predictors
(e.g., diagnosis status), denoted as x = (z1,...,x,)", to predict a V x V matrix response,
denoted as L = (Lg,4))1<g,9<v, Where g is a vertex and V' is the total number of vertices. In
this case, L is the rfMRI connectivity matrix and x may include age, gender, and diagnosis
status (AD, NC, or MCI). The rfMRI data has been widely used in behavioral and cognitive
neuroscience to understand functional segregation and integration of different brain regions
in a single subject and across different populations [8, 16, 13, 9, 3].

To answer questions (Q1) and (Q2), we develop a Bayesian low-rank graph regression

modeling (BLGRM or Bayesian LGRM) framework to deal with three challenges arising
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from the use of x to predict high-dimensional L. Such challenges include (i) complex spatial
information, (ii) high-dimensional data, and (iii) the remarkable variability of brain func-
tional connectivity across subjects and groups. It is common to believe that organization
of brain networks are governed by both short- and long-range connections among differ-
ent brain regions. Moreover, in most neuroimaging studies, the dimension of functional
and structural connectivity data (or L) can be much larger than the number of subjects,
which varies from several dozens to a few thousands. Specifically, for the rfMRI data set
from ADNI, we have n = 153 and each connectivity matrix L contains V' (V —1)/2 = 6670
unique elements for V' = 116. There is a considerable inter-subject spatial variability due to
natural variability, striking neuroanatomical variations, different conditions, and different
subject groups.

In the current literature, there are two major approaches to the group analysis of func-
tional connectivity data, including univariate methods and graph theoretic methods. The
graph theoretic methods consist of calculating graph theoretic summaries (i.e., girth, diam-
eter, modularity, small-worldness) of the entire graph for each subject and fitting linear (or
nonlinear) regression models with these summaries as responses. A key limitation of the
graph theoretic methods is that it cannot reveal subtle differences at both sub-network and
nodal levels. The most popular univariate approaches involve fitting a regression model,
such as linear regression, to association measures (e.g., correlation and partial correlation)
from all subjects at each edge, and then generating a statistical network map of test statis-
tics and p—values across all edges. One fundamental issue of such univariate methods is
to correct for multiple comparisons due to the large number of network edges when V' is
relatively large. Therefore, these univariate methods often suffer from the low statistical
power of detecting from weak to moderate signals [17], even though there are some network
analogues of cluster-based thresholding methods, such as the network-based statistic and

spatial pairwise clustering methods. So, alternative connectivity analysis methods are crit-



ically needed for understanding the complex organization of brain network, while achieving
dimension reduction.

There is a great interest in developing statistical models that explicitly delineate the
conditional distribution of L given x, that is, p(L|x). Ideally, such model should account
for the complex topological structure of networks, while flexibly assessing the effects of
multiple variables of interest and local network features. For a single network, popular
models, including exponential random graph models, stochastic block models, and latent
space models, were primarily developed for binary networks, whereas their extensions to
weighted networks remain in their infancy. Little has been done on relating weighted
networks with various covariates of interest such as disease status and time due to additional
computational and methodological challenges.

The aim of this paper is to propose Bayesian low-rank graph regression models with ma-
trix responses and clinical covariates. Our BLGRM can be regarded as a novel extension of
the hierarchical eigenmodel for pooled covariance matrices [15], tensor decomposition [18],
and standard linear model. The key idea of LGRM is to find an intrinsic low-dimensional
subspace for all subjects, denoted as B. Such B not only allows us to dramatically re-
duce dimension, but also characterizes the organization of brain connection maps across
subjects at a system level. We further represent each graph response by using a R X R
subject-specific coefficient matrix (A;), while preserving an individual network structure of
the low-dimensional eigenspace. One more intriguing part is that we introduce a hierarchi-
cal structure of A; in order to incorporate the effects of clinical/demographic covariates on
graph responses. Due to weak identifiability and high posterior dependence among param-
eters of our decomposition model, BLGRM suffers from poor mixing and slow convergence
of MCMC samplers. We adapt a parameter expansion approach to our graph regression
model (PX-BLGRM) to address the issues. Based on this formulation, an efficient Markov

chain Monte Carlo (MCMC) algorithm is used to perform posterior computation. We take a



Bayesian approach to estimate the parameters involved in B and the regression coefficients
associated with covariates. We examine if effects of covariates of interest are important on
explaining graph responses by utilizing highest posterior density (HPD) intervals.

The rest of this paper is organized as follows. In Section 2, we introduce BLGRM in
details and present its Bayesian estimation procedure. In Section 3, we present simulation
results to evaluate the finite sample performance of the estimation procedure. In Section
4, we apply BLGRM to the ADNI dataset discussed above in order to address (Q1)-(Q2).

Section 5 presents concluding remarks.

2 Bayesian Low-rank Graph Regression Models

2.1 Model Specification

We consider network data from n independent subjects in ADNI. For the i-th subject,
we observe a p X 1 vector of predictors, denoted as x;, and a graph, denoted as L; =
(Litg,9))g,g<v, corresponding to V' vertexes. Without loss of generality, it is assumed that
L; is symmetric, that is, Ljg ¢y = Liy g holds for all g,¢" < V.

Our BLGRM consists of two key components, including a common component model

and a regression model. The common component model is given by

R R
Li(g.g) = Z Z Brglitrs)Bsg + €i(g.90); (1)

r=1 s=1
where €4, are measurement errors, and A;.) as subject specific coefficients can be non-
zero even for r # s. Moreover, B = [3,,...,8z] is a V x R orthogonal matrix and
the common eigenmap across all subjects, where 3, = (fs4)4<v is an orthonormal basis

for s = 1,..., R. The subject-specific matrix A; = [)\i(m)} . breserves an intrinsic

r,s=1,-

network structure in the low-dimensional space spanned by the columns of B. Equation



(1) can be written in a matrix form as follows:
L, = BA,B' + ¢, (2)
where €; = (€;(4,9)). For the symmetric graph, our regression model assumes that
Airs) = Ni(rys) = Jris(Xi) + 0i s, (3)

where §; (, sy are measurement errors and f, s(x;) is an nonparametric or parametric function

of x;. A simple example is to set f,s(x;) = X;fpfyr,s. In general, one may choose a set of

basis functions, say {¢x(x;)}r<x and then approximate f,(x;) by Z,If:l i (Xi) Vi(r,s) -

RxV

Our BLGRM based on (2) and (3) has at least four unique features. First, it achieves
substantial dimension reduction by reducing from V (V' —1)/2 to around V R+ R(R+1)/2 for
each subject to deal with high-dimensionality of connectivity matrices. Second, the R eigen-
maps B, = {5,(g) : g € G} can be considered as independent networks of vertices that char-
acterize the latent organization of connectivity structures across subjects at a system level.
Then, the subject-specific coefficient matrix A; preserves an individual network structure in
the low-dimensional space spanned by the eigenmaps. It enables us to construct an under-
lying relational structure among brain areas and to reduce heterogeneity of functional con-
nectivity in the low-dimensional space. Third, 0, . = {n;,(g9) = S Bs(9)Niys) 9 € G}

delineate individual organization of connection maps between vertices across R different
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latent networks. One more intriguing part is that we assume a hierarchical structure within
a prior of A; in order to estimate effects of clinical/demographic covariates. Our method
facilitates estimation of the effects of covariates on the A; matrices while decomposing the
connectivity structure within MCMC iterations. By considering a diagnostic indicator as
a covariate, e.g., Alzheimer’s disease or cognitively normal, local differences in functional
connectivity can be detected. Also, this hierarchical structure allows the decomposition
to be supervised by average covariates of subjects. Thus, the estimated eigenmap B not
only explains variation of the connectivity across subjects but also takes into account for
interrelation between covariates and connectivity.

Details for a Bayesian approach will be followed in the next section.

2.2 Bayesian Approach with Standard Priors

In order to estimate parameters of interest, we take a Bayesian approach. The full

posterior distribution is proportional to

n(A, B, 0% 05| L; X) o< p(L|A, B, o*)m (AT, 053 X7 (T|o7) 7 (B)m (%) (05)7 (o).

v

We assume that the measurement errors ¢;(g, ¢') follow i.i.d. symmetric Normal distribution
28] with the mean 0 and the variance 0. For the pre-specified number of eigenvectors R,

the likelihood of Ly, --- | L, can be written by

1 nV(V4+1)/2 n 1 o
\/W) Z1;[lexp [—Wtr ((Ll — BA;B ) )} .

To ensure identifiability of the decomposition model, we assume that the eigenmap B is

p(L17"'7Ln|BaA17"'7An) = <

a lower triangular matrix [11]. Also, the number of eigenvectors R should be chosen such

that VR — R(R—1)/2+nR(R+1)/2 < nV(V +1)/2. We assume the following priors

Bir ~ N(0,77'¢;,"), 1<i<V, 1<r<min(i,R)

Gir ~ Gamma(l,a0/2), ag ~ Gamma(ay,as), 7(7.) = 1/7,.
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- 1
W(Ala U 7A'TL|A17 U 7An7 ‘73) (8 HeXp {_Wtr ((AZ - Al)Q)
i=1 0

1

71'(].-‘) X exp |i—r‘_2tr (I‘/F):| s O‘2 ~ IG(bl,bg), O’,QY ~ IG(Cl,CQ>,
Y

where vech(A;) = I'x; = [Ty, T}y, - ,a:;'yq]/, q = R(R+ 1)/2. The regression covari-

ates for the i-th subject are denoted by «; = (1,1, - - - ,x,-1)" and the regression coefficients

are given by T' = [y, ,v,] = [v;]j=1, where v; = (y0;,- -+ , Yp-1);)’- For lower triangu-

lar elements of B, we adapted Bayesian lasso priors [27] for each column to induce sparse

eigenmap loadings for each eigenvector.

2.3 Parameter-Expanded Model

Even with the identifiability constraints, our proposed model suffers from poor mixing
and slow convergence of MCMC samplers due to weak identifiability and high posterior
dependence of B and A;’s. For better identification of parameters, we fix oy, the scale
of A;, as 1. We adapt a parameter expansion approach to our graph regression model
to diminish posterior dependence between B and A;’s. Parameter expansion has been
proposed by Liu et al. [23] for computational efficiency of expectation-maximization (EM)
algorithms by introducing a parameter-expanded model with overparameterized parame-
ters. The parameter expansion approach also improves convergence and mixing of MCMC
samplers and reduces high posterior dependence among parameters [24, 10, 12]. Ghosh and
Dunson [12] proposed parameter expansion in Bayesian factor analysis to weaken posterior
dependence of parameters and to induce heavier-tailed priors for factor loadings. They
showed improved mixing of parameters that were transformed back to the original model

from the parameter-expanded model.



We rewrite the original model (2) as the following parameter-expanded model,

= s(B)oB*& /2,
A; = dB)P2AEV24(B),

where ¥ = diag(vy, - -+ ,¥r), d(B) = diag (sign(f511), - - - ,sign(frr)), and s(B)isa V x R
matrix whose every row is [sign(f11), - - - ,sign(Sgrgr)]. The sign of diagonal elements in B is
accordingly multiplied for the indentifiability purpose. In a similar manner of the original

setup, we assume the following priors for the model (4).

Br o~ N(O,T,Tl(bi;l), 1<i<V, 1<r<min(iR)

v

Gir ~ Gamma(l,ag./2), ao, ~ Gamma(ay,as), ©(7.) = 1/7,

s 1
T(A, - ALAL - AL ) o []exp {—étr{((Aj - A))W)*}
=1

1
7(I'™) o exp [—20_7

tr (F*/F*):| s 0'2 ~ IG(bl, bg), O',2y ~ IG(Cl, CQ)

2

v~ Gamma(ve,v,), i=1,--- R,

where vech(A}) = T''x; = [33;7’{, Ty, ,a:;'yﬂ/, T = I‘*(d(B)\Ill/2)®s (d(B)\III/Q), and
qg=R(R+1)/2.

Then, the posterior distribution for each parameter is given by

1 n ) 1 RV .
T 952 ;tr <(Ll - B'A; B )2) D) Z Z(ﬂir)QTr(ﬁir . (5)

r=1 i=r

vech(Ajle) ~ N (u;S), (6)

7(B*|e) o exp

where
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-1
b@Q f; QD + D(¥ ®, \P)D) ,

w; = SDsvec(P;), Sz(

1
BB, P,= —B LB +WA¥,
D = diag( 1\/_ \/_,1,\/_ \/_ ).

R elements (R - 1) elements 1 element

Q
|

The regression parameters are sampled from the following posterior:

vee(T*|o) ~ N (1, S,). (7)
where
n 1 -1
p, =S Z(wl vech(WA; W) (Z{ (P @, ¥ )®$i$;}+—21) _
o
i=1 b
The hyper-parameters are sampled based on the following posterior distributions:
. Qor
Oir ~ Inverse — Gaussian ( — a()r) (8)
TrPjy
V o 1 14 . * 2
7. ~ Gamma It , izr Py (9)
2 2
v
L/ éw
apr ~ Gamma <a1 +(V—r+1),a+ M) (10)

nV(V+1) 1 (L R
o? ~ IG <b1+¥,§tr (Z(Li—B A;B )2>+b2> (11)

i=1

o~ 16 (co+pT,§tr(r*'r*)+c1), (12)

and we employ slice sampling to get a posterior sample from
(¥, ¥r) o w(W)w(A] -+ AL ). (13)
In summary, the posterior sampling proceeds as follows.
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1. Employ slice sampling to get a posterior sample from 7(3;|B{_,),®) in (5) after a

certain amont of burn-in iterations.
2. Update A} generated from N (p,;, S) in (6).
3. Update I'* generated from N (., S,) in (7).
4. Update hyperparameters from (8)-(13).

The number of eigenvectors R is chosen by a Bayesian information criterion (BIC) and

the reconstruction error is measured by the ratio of Frobenius norms:

~o~ o~

1~ ||Li — BA;B ||p

error = — : (14)
n; 1Ll

3 Simulation study

In this section, we conduct simulation studies to illustrate the performance of the
parameter-expanded BLGRM. We assume that there are 100 subjects + = 1,--- , 100 and
their response data are simulated from the underlying model L, = BA;B + €;, where L;
denotes any symmetric matrix response. We applied our proposed method to estimate
B, A, --- A, and to recover Ly, ---, L,. We run 5,500 MCMC iterations with 500 burn-
in. We repeated the simulation 50 times under four different scenarios.

In section 3.1, we examine if the true number of eigenvectors is correctly chosen by
BIC. We investigate two different scenarios: there is a common basis B with rank 3 (sce-
nario 1), and there are two different bases By and B for two subject groups, with rank
3 respectively (scenario 2). We don’t include any covariates «; in this section. In order to
compare the performance of the proposed method with other competing methods, in sce-
nario 1, we consider a frequentist version of LGRM, PARAFAC, and three-way DEDICOM,
focusing on the reconstruction error defined in (14). PARAFAC and three-way DEDICOM
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can be regarded to decompose a multiple (symmetric) matrices into a common basis and
specific coefficients, while they impose more constraints than our method does. PARAFAC
decomposes a tensor into a sum of component rank-one tensors such as

R
L~ E Uur o Ssr04,,

r=1
where L is a V x V x n tensor, and q, € R", u, € RV, s,, € RY. Because L; is symmetric,

we set u,, = s,. Here, we reformulate the PARAFAC model to be comparable with our

model as following:
R
L; ~ Zqir(ur ou,) fori=1,--- n.
r=1

Then u, plays a role of the common basis and ¢;. can be considered as a subject-specific
scalar coefficient. Three-way DEDICOM is an extended version of the DEDICOM model so
that it can incorporate a third mode of the data [14] and decompose asymmetry matrices.
Here, we only consider symmetric L; € RV*" for comparison. Then the model can be
written as

Li =~ ADZQDzA, for i = 1, e, N,

where latent components A € RV*® interaction between different components @Q € RF*E,
a diagonal matrix D; € R¥*E, The r-th diagonal element in D; represents the i-th subject
specific weight of the r-th latent component. Three-way DEDICOM is similar to our
decomposition model in the sense that if A; can be decomposed as D;QD;, then the
center parts of two decomposition models are equivalent. Thus, DEDICOM is a more
constrained version of our decomposition model. We use a Python module ”scikit-tensor”
to calculate three-way DEDICOM available in https : //github.com/mnick/scikit—tensor.
For calculation of PARAFAC decomposition, we used the N-way Toolbox in MATLAB.
The frequentist LGRM estimates the parameter matrices in (2) by minimizing the

Frobenius norm of L; — BA; B’ using iterative optimization steps. This optimization prob-
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lem is solved by adapting low rank approximation techniques proposed by Ye [34]. In detail,
we consider the following optimization problem
min L, — BA;B'||}: such that B'B = Ij. 15
B 2 | iz (15)
Then,
Kz’ - ELZ'E/,

where the eigenmap B can be estimated from the following iterative optimization steps.
Under A; = BL;B’, the above minimizing problem is equivalent to maximizing

> ||IB'L;B|[; = ) tr(B'L,BB'L;B)

i=1 i=1

> tr(B'L;ByBy'L;B),

i=1

Q

where By is the B matrix from the previous iteration. Then B can be estimated by the

following iterative steps:

1. Let By be the B matrix from the previous iteration.

(\V]

. Calculate Q = """ | L,B¢By'L;.

w

. Compute the R eigenvectors {¢;}2 | of @ corresponding to the largest R eigenvalues.

4. Set B = [¢p1,¢9, -+ , OR|.

5. Repeat the above iterations until it converges.
6. Calculate _/A\Z = ELZ»E/, fori=1,---,n.

Also, the variance component o2 can be estimated by the MLE:



Section 3.2 discusses the accuracy of estimation for regression coefficients in BLGRM.
We consider binary (scenario 3) and continuous (scenario 4) covariates with an intercept.

Reconstruction errors are calculated as well.

3.1 Simulation 1

A. Scenario 1
We generate all simulation data sets from L; = BA; B’ +¢;. There exist 3 true underly-
ing common eigenmaps (R = 3). We assume that B and A; are 50 x 3 and 3 x 3 matrices,
respectively. The eigenmaps, subject-specific coefficient matrices, and measurement errors

are generated according to:

ﬁlgk ~ N(O’l)’ l:17..'7507 kzla"'aRa (16>
(€, ,€,) = gexp [_ﬁtr (e?)] (A, Ay = Eexp {—ﬁtr (Af)] '
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Figure 1: Panel (a) shows the first raw data matrix L; in the first simulation data set,

while panel (b) shows the approximated matrix by the proposed method.
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Figure 2: Panel (a) shows the first raw data matrix L; in the first simulation data set,

while panel (b) shows the approximated matrix by the proposed method.

In order to select the number of common eigenvectors in BLGRM and LGRM, we used
BIC. BIC perfectly selects the true number of eigenvectors, 3. Core consistency diagnostic
has been used for choosing the proper number of components for the PARAFAC model
[2]. For the three-way DEDICOM, there is no specific way to determine the number of
components to examine approximation performances. We plot the reconstruction errors as
increasing the number of eigenvectors (components). Figure 1 shows the simulation results
based on 50 replications. The (Monte Carlo) error bars are depicted with the Monte Carlo
mean of reconstruction errors. Core consistency diagnostic gives 2 as median of the ad-
equate numbers of components for PARAFAC based on 50 repetitions, while 3 is always
chosen by BIC for BLGRM and LGRM. One can see that the BLGRM and LGRM ap-
proximate the raw data matrices fairly well with the true number of eigenvectors, while the
reconstruction errors tend to be slightly increasing as the number of eigenvectors increases.
The PARAFAC model achieves satisfactory approximation performance when the number

of components is 6, while its core consistency diagnostic recommends to use 2. On the other
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hand, the core consistency chosen model of PARAFAC gives about 0.7 reconstruction error
in average, which is much larger than those BIC chosen BLGRM and LGRM give. And the
reconstruction errors of three-way DEDICOM gradually decrease as the model complexity
increases. Also, its variability is very high compared to the other competing methods as
suggesting its unstable performance. BLGRM performs better as the decomposition model
gets more complex than LGRM does. MCMC iterations and burn-in in slice sampling
could provide BLGRM more opportunity for better approximation. Reconstruction error
and Figure 2 demonstrate that our decomposition method can approximate the raw matrix

well.

B. Scenario 2

We generate other simulation data sets from Lf = BgAZ»Bg’ +e€, 9g=1,---,G, i=
L,--+,ng, where n = ZgG:l ng. We consider 0 = 1, R = 3 and two groups, i.e., G = 2.
B, = [81,---,B%] and A; are generated from

8% ~ N(0,1),1=1,---,50, k=1,--- ,R,

(A, -, Ay) = leexp {—%tr (A?)} .

Because we have different (independent) eigenmaps for two groups, the total number of

common eigenvectors across subjects must be 6.
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Figure 3: Figure (a) shows the first raw data matrix L; in the first simulation data set,

while figure (b) shows the approximated matrix by the proposed method.

The true number of eigenvectors is perfectly recovered by BIC. The Monte Carlo mean
and standard deviation of reconstruction errors are given by 0.059 and 0.021 respectively.
Figure 3 demonstrate that our decomposition method approximates the raw matrix well,
while it has a slightly larger reconstruction error (Monte Carlo mean=0.036, Monte Carlo

5.d.=0.010) than the scenario 1.

3.2 Simulation 2

This simulation study aims to examine if the coefficient values are estimated well by the

proposed method. We measure the estimation error for I'; (j = 1,2) in the original space,

i.e., estimation error is defined by error,, = 'BFTEF_ g,Il"’ B iir
7 F

. Also we check convergence
of MCMC outputs by using trace plots.
We generate all simulation data sets from L; = BA;B’ +¢;, where R = 3. Set 0 = 1
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Table 1: Estimation errors for I'y and I'; in the two different cases. They are mean
of estimation errors from 50 replications and the corresponding Monte Carlo standard

deviations are recorded in the parentheses.

Scenario 3 Scenario 4
error,, | 0.074 (0.016) 0.038 (0.012)
error., | 0.141 (0.036) 0.105 (0.040)

B =[B,, -+ ,Bg] and A; are generated from

8% ~ N(0,1),1=1,---,50, k=1,--- ,R,

7(Ay, - A,) = Hexp {—%tr (A —A)%) .

Set the regression coefficients as

1 11 0 40
I'i=111 1|, I'e=14 0 4
1 11 0 40
A. Scenario 3
The scenario 3 considers a binary covariate ; = [1, xy;], where xy; ~ B (%) and

calculate vech(A;) = I'x;, T = [vech(Ty), vech(Ts)],

B. Scenario 4

In this scenario we consider a continuous covariate, x; = [1, x|, x1; ~ N (0.5, 1), where

vech(A;) =T"x;, T = [vech(T'y), vech(T)].
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Figure 4: Trace plot for posterior samples of B elements. It shows rapid and nice mixing

and convergence of MCMC chains.

Table 1 shows estimation errors for Iy and I'y in the two different cases. They are
mean estimation errors with 50 replications with the corresponding standard errors in the
parentheses. One can see that the coefficients are estimated satisfactorily. Figure 4 shows
rapid and nice mixing and convergence of MCMC chains for randomly chosen 10 elements

in B matrix in the scenario 4.

4 Application to Alzheimer’s Disease

Altered brain connectivity has been considered as a critical factor to explain cognitive
decline in Alzheimer’s disease (AD) [5, 6]. It has been reported that some regions in mild
AD brains have abnormal functional connectivity with other brain regions including medial
prefrontal cortex (MPFC), ventral anterior cingulate cortex (vACC), right inferotemporal
cortex, right cuneus extending into precuneus, left cuneus, right superior and middle tem-
poral gyrus and posterior cingulate cortex (PCG or PCC) through a seed based approach
using Fisher’s z-transformation and t-tests [31]. Wang et al. [30] showed that AD patients

had decreased connectivity between prefrontal and parietal lobes and increased within-
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lobe functional connectivity by whole brain ROI based t-tests. But they conducted 6670
(116*115/2) multiple testing at 0.01 significance level without any correction, their results
therefore suffered from severe false positive problems.

To overcome limitations of the current methods, we applied our proposed method and
tested group differences among normal control (NC), mild cognitive impairment (MCI), and
AD patient groups. Instead of the raw correlation matrices, we used Fisher’s z-transformed
correlation matrices, which would make the data to be more suitable to our model assump-
tions. The transformed correlation coefficient ranges from negative infinitiy to positive
infinity, while the original sign is preserved. We considered 4 covariates and the intercept:
gender (1), age(v2), MCI=1(v3), and AD=1(~4). By using HPD intervals of v3, 74, 74 — 73,

we determine if there is any group difference in their connectivity patterns.

4.1 Data Acquisition and Pre-processing

For resting state fMRI, the imaging protocol is Field Strength=3.0 tesla; Flip Angle=80.0
degree; Manufacturer=Philips Medical Systems; Matrix X=64.0 pixels; Matrix Y=64.0 pix-
els; Mfg Model=Intera; Pixel Spacing X=3.3125 mm; Pixel Spacing Y=3.3125 mm; Pulse
Sequence=GR;; Slices=6720.0; Slice Thickness=3.313 mm; TE=30.001 ms; TR=3000.0 ms;
to obtain 140 volumes.

The fMRI data was pre-processed with the following steps: 1) discarding the first 10
time points, 2) slice timing, 3) head motion correction, 4) intensity scaling of each fMRI scan
after motion correction to yield a whole-brain mean value of 10000, 5) temporally band-pass
filtering (0.01 Hz-0.08 Hz), 6) regression out of a set of nuisance signals including signal
averaged over the white matter, signal averaged over the cerebrospinal fluid, global signal
averaged over the whole-brain, and six motion parameters, 7) nonlinear normalization
into Montreal Neurological Institute (MNI) space with resolution 333mm? using SPMS;

8) spatially smoothing with a 6 mm full width at half maximum Gaussian kernel. The
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Table 2: We summarized demographic information at the baseline of the 153 ADNI sub-
jects. For an age variable, its mean and standard deviation (mean + sd) were presented. For
a binary variable, gender, the count and the percentage (in parentheses) of male subjects

were shown.

Total NC MCI AD
(N=153) (N=54) (N=75) (N=24)
Gender (male) | 75 (49.02%) 25 (46.29%) 38 (50.67%) 12 (50.00%)
Age (in years) | 72.44 + 6.62 72.92 £ 6.06 71.78 £ 6.81 73.40 £+ 7.27

nonlinear normalization of fMRI data was implemented using DARTEL of SPMS8 with the
deformation fields of their co-registered T1-weighted images.

The data used in this study was obtained from Alzheimer’s Disease Neuroimaging
Initiative (ADNI). The ADNI study has aimed to detect and monitor the early stage
of Alzheimer’s disease (AD) by investigating serial magnetic resonance imaging (MRI),
positron emission tomography (PET), genetic, biochemical biomarkers, and neuropsycho-
logical and clinical assessment. For up-to-date information, see www.adni-info.org.

We used 153 subjects from ADNI-1, ADNI-GO, and ADNI-2. There were four baseline
diagnostic categories: normal aging/cognitively normal (CN), significant memory concern
(SMC), MCI, and AD. The ADNI described that SMC subjects had a concern and exhib-
ited slight forgetfulness, while their cognitive scores were within normal range. As their
cognition was normal and forgetfulness was not consistent, SMC subjects were combined
with CN subjects. We called this combined group “normal control (NC)” from now on.
The demographic information at baseline was summarized in Table 2. In the whole data,
there were 75 male and 78 female subjects. Their average age was 72.44 years with standard
deviation of 6.62 years. There were 25 NC male subjects and the average age of the NC
subjects was 72.92 years with 6.06 years standard deviation. Among 75 MCI patients, 38
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patients were male. The average age of the MCI subjects was 71.78 years with 6.81 years
standard deviation. For AD patients, 12 of them were male patients, while their average

age was 73.40 years with standard deviation of 7.27 years.

-m
€y
Define ROIs

13

BOLD signals
for each ROI

Functional
connectivity

Figure 5: Process to estimate functional connectivity from resting-state fMRI data.

Figure 5 shows the overall procedure to calculate the resting-state functional connectiv-
ity from fMRI data. We used an Automated Anatomical Labeling (AAL) atlas, a widely
used manual macroanatomical parcellation, and finally got 116 ROIs for a single subject.
We used AFNI package of [4] to compute the average BOLD signal over a ROI of all voxel

values.
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4.2 Data Analysis Results

(a) Standardized (b) Thresholded

Figure 6: Figure (a) shows the estimated B matrix with standardized scale, while figure

(b) shows the standardized B matrix after thresholding.

In order to find the proper number of eigenvectors, we use BIC and chose the number of
eigenvectors whose corresponding BIC was the smallest. We set the number of eigenvectors,
R to be 14. We run BLGRM with 5,500 MCMC iterations with 500 burn-in. We use the
same setting for hyperparameters as in the simulation studies.

Figure 6 shows the estimated B matrix. For better presentation, we plotted the stan-
dardized B matrix and the thresholded matrix (>1.96). Interestingly, the 1st eigenvector
mainly consists of the right precentral gyrus, the right superior parietal gyrus, the right
supramarginal gyrus, the right supplementary motor area, the right postcentral gyrus, the
bilateral paracentral lobule, and the right inferior parietal gyrus. The most of the main
components (The superior parietal, supramarginal, postcentral, and inferior parietal gyrus,

and the paracentral lobule) are all within the parietal lobe. The parieral lobe merges sensory
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Figure 7: Shows how the raw correlation matrix of the first subject can be decomposed by

the BGSC.

information among heterogeneous sources, such as proprioception, mechanoreception in the
somatosensory cortex, and the dorsal stream of the visual system. A recent research finds
that specific parietal regions including posterior parietal cortex contribute to retrieval tasks
of episodic memory [29]. Thus, this eigenvector could represent brain functions of sensory
information integration and episodic retrieval in a system level. The 3rd eigenvector has
large weights on the left supplementary motor area, the left rolandic operculum, bilateral
medial superior frontal, left superior frontal, left middle frontal, left triangulargyrus inferior
frontal, and right superior occipital gyrus. It most consists of brain regions in pretemporal
lobe. The prefrontal lobe plays a central role in cognitive control, “the ability to take charge
of ones actions and direct them towards future, unseen goals” [26]. Also its impairment is
replicated to be associated with antisocial behavior [33]. Thus, this eigenvector describes
individual’s cognitive control and behavior. The main components of the 13th eigenvector

are the bilateral precuneus and the bilateral posterior cingulate gyrus. This eigenvector
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represents default mode network, because PCG/PCUN and angular gyrus are functional

hubs of default mode network, which is disrupted in people with AD, and autism spectrum

disorder [1].
o _ @.7)
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Figure 8: Shows the posterior means marked by “x” and the corresponding 95% HPD
intervals (each vertical line) of vech(I'y — I's). There are 4 pairs of eigenvectors that have

important group differences, as their HPD intervals do not include 0. See the purple lines.

Figure 7 shows how well the raw correlation matrix of the first subject is approximated
by the proposed method (with the total reconstruction error=0.67). We also examine the
estimated regression coefficient I'y —I'; that represents the effect of a difference of MCI and
AD patients on their functional connectivity maps. Table 8 shows the estimated regression
coefficients by the posterior means and the correspondig 95% HPD intervals. We could
identify important group differences of some connectivity in the eigenspace by examining

the HPD intervals. There are 4 HPD intervals that do not include 0. It suggest us that the
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4 pairs of eigenvectors have important group differences. Based on our interpretation of
the estimated B matrix, for example of the pair of the 1st and 3rd eigenvectors, MCI and
AD patients have different functional connectivty among brain regions of sensory informa-
tion integration/episodic retrieval and cognitive control/behavior. For the pair of the 1st
and 13th eigenvectors, there is a group difference in terms of connections among sensory

information integration/episodic retrieval regions and default mode network.

ROz

RIOIz

Figure 9: —log,,(p) of univariate (ROI-wise) two-sample t-test for AD and MCI groups.

On the other hand, we could not find any significant group differences for AD and MCI
patients by using ROI-wise univariate two-sample t-test for correlation coefficients after
Fisher’s z-transformation. Figure 9 presents — log,,(p) of the two-sample t-tests for AD
and MCI groups. After Bonferroni correction, — log;,(p) should be greater than 5.13 at 0.05
significance level, or it should be greater than 1.30 without any multiple testing correction.
But we could not identify any significance group difference with/without correction.

In order to see which ROIs have functional connectivity differences among MCI, and
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AD, we map estimated coefficients T from the eigenspace to the original ROI space. We

use B and “sparse” T to calculate the coefficient matrix by the following steps:
1. Estimate B and I' by the proposed method.

2. Calculate 95% HPD interval of all the elements in I' and find unimportant elements

(pairs of brain regions) whose HPD intervals include 0.
3. Set the corresponding coefficient values to be 0. Denote the sparse TasT.

AN AN A

4. Use BT'B' as estimated coefficients for the ROI space.
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Figure 10: Shows which pairs of two ROIs have different connectivity between MCI and
AD groups.
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Figure 11: Shows which pairs of two ROIs have different connectivity between MCI and
AD groups.

By using the above steps, we mapped the estimated coefficients from the eigenspace to
the original ROI space. Then we plotted the estimated regression coefficients on the brain
template using BrainNet Viewer of Xia et al. [32]. The first 5% largest effect sizes were
selected to be shown in the figures. Figure 10 shows which brain regions have stronger (or
weaker) positive connectivity for AD patients compared to MCI patients, while Figure 11
shows which brain regions have different negative connectivity pattern between MCI and
AD groups. In Figure 10, the red line represents the estimated coefficient value y4 —~3 > 0,

which implies that AD patients have a stronger positive connection than MCI subjects
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between the corresponding two ROIs. The blue line represents the estimated coefficient
value 74 — 73 < 0 indicating that AD patients have a weaker positive connection than MCI
subjects between the corresponding two ROIs. For the negative connectivity, in Figure 11,
the red line implies that AD patients have a stronger negative connection than MCI subjects
between the corresponding two ROIs. The blue line indicates that AD patients have a
weaker negative connection than MCI subjects between the corresponding two ROIs. It is
observed that various brain regions have weaker or stronger connections for AD patients,
which implies that AD patients would have altered functional network compared to MCI
patients.

In order to examine functional connectivity differences between MCI and AD patients,
we focus on Figures 10, 11, and Tables 4 and 5. Note that the regression coefficients
have different interpretation depending on the sign of the average transformed correlation
coefficient in MCI patients. Table 4 shows selected regression coefficient estimates where
the average of transformed correlation coefficient in MCI patients is positive, while Table
5 presents selected coefficient estimates in the negative cases. We list some of regression
coefficients whose sizes are the top 5%.

Figure 4 tells us MCI and AD patients have different positive functional connectivity
among prefrontal, parietal, PCG/PCUN brain regions. The bilateral PCUN has weaker
positive connections between the right precentral gyrus, the right postcentral gyrus, the
right supramarginal gyrus, the right superior parietal gyrus, and the right paracentral lobe
for AD patients than MCI patients. AD patients have lower positive connectivity among
the right PCG and the right supramarginal gyrus gyrus, the right paracentral lobule, and
the right supplementary motor area than MCI patients do. Furthermore, the bilateral
PCUN has weaker negative connections between the right precentral gyrus, the right post-
central gyrus, the right supramarginal gyrus, the right superior parietal gyrus, and the left

brain regions in prefrontal lobe for AD patients than MCI patients. It implies disrupted

32



connections for AD patients among default mode network, sensory information integration
, episodic memory retrieval, and cognitive behavior.

From Figure 5, one can observe that AD patients have altered negative connections
among prefrontal, parietal brain areas. We finds that AD patients have weaker negative
connections among the left superior frontal /middle frontal gyrus and parietal lobe including
postcentral, supramarginal, inferior parietal gyrus and paracentral lobule. It suggests that
AD patients have weaker negative connectivity between sensory information integration/
episodic memory retrieval and cognitive behavior/control.

On the other hand, our study suggests that there is a connectivity difference of para-
central gyrus with other brain regions including superior, middle, inferior frontal gyri (see
Tables 4 and 5). A fMRI study by Mason et al. [25] showed that, when stimuli from some
senses are deliberately reduced or removed, the mind recruits some brain regions includ-
ing the medial posterior cingulate, PCUN, PCL, the inferior frontal cortices, superior and
middle frontal gyri, and a cluster spanning dorsal medial frontal regions. These distributed
foci have temporal coherence and constitute a tightly coupled, organized neural network. It
may indicate that brain network differences between MCI and AD patients can be explained

by certain brain reaction to sensory deprivation.

5 Discussion

In this study, we proposed a BLGRM by taking a global approach to analyze brain func-
tional connectivity. It decomposes any symmetric data matrices with common eigenmaps
across subjects and the subject-specific coefficient matrix. We see that the subject-specific
coefficient matrix preserves an individual network structure in the low-dimensional space
spanned by the common factors. We took a Bayesian approach to estimate the underly-

ing factors, individual coefficient matrix, and some parameters involved in the prediction
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model for clinical outcomes. We assumed a hierarchical structure within the prior of A;,
so that we could automatically estimate the effects of covariates on the A; matrices within
MCMC iterations. Furthermore, the parameter-expansion approach was taken on our graph
regression model to reduce posterior dependence between B and A;’s.

The simulation studies demonstrated that our method efficiently approximated the raw
symmetric matrix data with good MCMC mixing properties. We compared reconstruction
errors of our method with those of LGRM, PARAFAC, and three-way DEDICOM. Our
method efficiently approximated the raw data matrices by a fewer number of eigenvec-
tors than the other competing methods. Also the regression parameters for L; could be
recovered satisfactorily.

The ADNI real data analysis revealed that the bilateral PCUN/PCG had weaker con-
nections between parietal /pretemporal lobe for AD patients than MCI patients. It suggests
that AD patients have disrupted connections among brain regions involving default mode
network, sensory information integration, episodic memory retrieval, and cognitive behav-
ior. Also, there was a connectivity difference of paracentral gyrus with other brain regions
including superior, middle, inferior frontal gyri. This finding agreed with other functional
connectivity studies by [3, 21, 25, 31].

This study could provide a guideline to elucidate hidden pathology of neurological dis-
orders in a brain connectivity perspective. In clinical application, our method can be used
to (1) examine if normal subjects and patients (or among disease subtypes) have a different
functional connectivity structure and where the difference comes from. This exploratory
analysis allows better understanding of the underlying mechanism of a disorder, which fur-
ther may help to develop future treatments targeting some identified brain regions. Also,
altered connectivity can provide (2) diagnostic and prognostic information [7]. To incor-
porate clinical outcomes to measure diagnostic and prognostic status, our method can be

modified by reformulating the regression model (3) to use the clinical outcomes. Capturing
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disruption in functional connectivity can be important for better/earlier diagnosis of psy-
chiatric disorder. For example of ADHD, a subject is diagnosed as ADHD if the subject
meets the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria. The test
result can be varied depending on interview environment, examiners and examinees. And
it is still subjective criteria. If abnormality of functional connectivity is a very early sign
to develop a disorder or a biomarker for prognosis, it will be promising to use the infor-
mation as an objective diagnostic/prognostic tool. One more intriguing suggestion is that
(3) abnormal functional connectivity will become prominent in neurogenetic studies [19].
While genetic factors are emerging in psychiatric disorder research, their effect size is very
small and their working mechanism still needs to be elucidated. Because brain organization
and function are influenced by genetic factors [20, 22] and brain information has relatively
large impact on disease progression, functional connectivity can be a mediator to explain

connection among genetic mutations and disorders.

35



References

1]

[10]

J. R. Andrews-Hanna, J. S. Reidler, J. Sepulcre, R. Poulin, and R. L. Buckner.
Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4):550—
562, 2010.

R. Bro and H. A. Kiers. A new efficient method for determining the number of
components in parafac models. Journal of chemometrics, 17(5):274-286, 2003.

R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter. The brain’s default network.
Annals of the New York Academy of Sciences, 1124(1):1-38, 2008.

R. W. Cox. Afni: software for analysis and visualization of functional magnetic reso-
nance neuroimages. Computers and Biomedical research, 29(3):162-173, 1996.

M.-C. de LaCoste and C. L. White. The role of cortical connectivity in alzheimer’s
disease pathogenesis: a review and model system. Neurobiology of Aging, 14(1):1-16,
1993.

X. Delbeuck, M. Van der Linden, and F. Collette. Alzheimer’disease as a disconnection
syndrome? Neuropsychology review, 13(2):79-92, 2003.

M. D. Fox and M. Greicius. Clinical applications of resting state functional connec-
tivity. Frontiers in systems neuroscience, 4:19, 2010.

K. Friston. Causal modelling and brain connectivity in functional magnetic resonance
imaging. PLoS biol, 7(2):e1000033, 2009.

W. Gao, H. Zhu, K. S. Giovanello, J. K. Smith, D. Shen, J. H. Gilmore, and W. Lin.
Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-
old healthy pediatric subjects. Proceedings of the National Academy of Sciences, 106
(16):6790-6795, 2009.

A. Gelman et al. Prior distributions for variance parameters in hierarchical models

(comment on article by browne and draper). Bayesian analysis, 1(3):515-534, 2006.

36



[11]

[12]

[13]

[14]

18]

[19]

[20]

J. Geweke and G. Zhou. Measuring the pricing error of the arbitrage pricing theory.
Review of Financial Studies, 9(2):557-587, 1996.

J. Ghosh and D. B. Dunson. Default prior distributions and efficient posterior compu-
tation in bayesian factor analysis. Journal of Computational and Graphical Statistics,
18(2):306-320, 2009.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon. Functional connectivity in
the resting brain: a network analysis of the default mode hypothesis. Proceedings of
the National Academy of Sciences, 100(1):253-258, 2003.

R. A. Harshman. Models for analysis of asymmetrical relationships among n objects
or stimuli. In First Joint Meeting of the Psychometric Society and the Society for
Mathematical Psychology, McMaster University, Hamilton, Ontario, volume 5, 1978.

P. D. Hoff. A hierarchical eigenmodel for pooled covariance estimation. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 71(5):971-992, 20009.

S. A. Huettel, A. W. Song, and G. McCarthy. Functional magnetic resonance imaging,
volume 1. Sinauer Associates Sunderland, 2004.

W. H. Kim, N. Adluru, M. K. Chung, O. C. Okonkwo, S. C. Johnson, B. B. Bendlin,
and V. Singh. Multi-resolution statistical analysis of brain connectivity graphs in
preclinical alzheimer’s disease. Neurolmage, 118:103-117, 2015.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review,
51(3):455-500, 20009.

K. Konrad and S. B. Eickhoff. Is the adhd brain wired differently? a review on struc-
tural and functional connectivity in attention deficit hyperactivity disorder. Human
brain mapping, 31(6):904-916, 2010.

J. W. Koten, G. Wood, P. Hagoort, R. Goebel, P. Propping, K. Willmes, and D. L.
Boomsma. Genetic contribution to variation in cognitive function: an fmri study in

twins. Science, 323(5922):1737-1740, 20009.

37



[21]

[22]

[27]

28]

[29]

[30]

[31]

R. Leech and D. J. Sharp. The role of the posterior cingulate cortex in cognition and
disease. Brain, 137(1):12-32, 2014.

R. K. Lenroot, J. E. Schmitt, S. J. Ordaz, G. L. Wallace, M. C. Neale, J. P. Lerch,
K. S. Kendler, A. C. Evans, and J. N. Giedd. Differences in genetic and environmental
influences on the human cerebral cortex associated with development during childhood
and adolescence. Human brain mapping, 30(1):163-174, 2009.

C. Liu, D. B. Rubin, and Y. N. Wu. Parameter expansion to accelerate em: The px-em
algorithm. Biometrika, 85(4):755-770, 1998.

J. S. Liu and Y. N. Wu. Parameter expansion for data augmentation. Journal of the
American Statistical Association, 94(448):1264-1274, 1999.

M. F. Mason, M. I. Norton, J. D. Van Horn, D. M. Wegner, S. T. Grafton, and C. N.
Macrae. Wandering minds: the default network and stimulus-independent thought.
Science, 315(5810):393-395, 2007.

E. K. Miller, D. J. Freedman, and J. D. Wallis. The prefrontal cortex: categories,
concepts and cognition. Philosophical Transactions of the Royal Society of London B:
Biological Sciences, 357(1424):1123-1136, 2002.

T. Park and G. Casella. The bayesian lasso. Journal of the American Statistical
Association, 103(482):681-686, 2008.

A. Schwartzman. Random ellipsoids and false discovery rates: Statistics for diffusion
tensor imaging data. PhD thesis, Stanford University, 2006.

A. D. Wagner, B. J. Shannon, I. Kahn, and R. L. Buckner. Parietal lobe contributions
to episodic memory retrieval. Trends in cognitive sciences, 9(9):445-453, 2005.

K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang. Altered
functional connectivity in early alzheimer’s disease: A resting-state fmri study. Human
brain mapping, 28(10):967-978, 2007.

L. Wang, Y. Zang, Y. He, M. Liang, X. Zhang, L. Tian, T. Wu, T. Jiang, and K. Li.

38



[34]

Changes in hippocampal connectivity in the early stages of alzheimer’s disease: evi-
dence from resting state fmri. Neuroimage, 31(2):496-504, 2006.

M. Xia, J. Wang, and Y. He. Brainnet viewer: a network visualization tool for human
brain connectomics. PloS one, 8(7):e68910, 2013.

Y. Yang and A. Raine. Prefrontal structural and functional brain imaging findings
in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Re-
search: Neuroimaging, 174(2):81-88, 2009.

J. Ye. Generalized low rank approximations of matrices. Machine Learning, 61(1-3):

167-191, 2005.

39



Table 3: AAL parcellation of the entire brain and their abbreviations used in this paper.

Abbreviation Name

Classification

SFG
SFGM
MFG
IFGOP
IFGT
PreCG
SMA
ROL
ANG
IPL
PCG
PCL
PCUN
PoCG
SMG
SPG
CUN
SOG
MOG
CAU
CRBL

Superior frontal gyrus

Superior frontal gyrus, medial
Middle frontal gyrus

Inferior frontal gyrus, opercular
Inferior frontal gyrus, triangular
Precentral gyrus
Supplementary motor area
Rolandic operculum

Angular gyrus

Inferior parietal gyrus
Posterior cingulate gyrus
Paracentral lobule

Precuneus

Postcentral gyrus
Supramarginal gyrus

Superior parietal gyrus
Cuneous

Superior occipital gyrus
Middle occipital gyrus

Caudate nucleus

Cerebellum

Prefrontal Lobe
Prefrontal Lobe
Prefrontal Lobe
Prefrontal lobe
Prefrontal lobe
Other frontal
Other frontal
Other frontal
Parietal lobe
Parietal lobe
Parietal lobe
Parietal lobe
Parietal lobe
Parietal lobe
Parietal lobe
Parietal lobe
Occipital lobe
Occipital lobe
Occipital lobe
Corpus striatum

Cerebellum
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Table 4: Shows the effect of a group difference between MCI and AD on the following pairs
of brain regions (Regions 1 and 2). The average of transformed correlation coefficients in

the MCI group is positive.

Regionl Region2 Coeff Regionl  Region2 Coeff
SFGM.R  PreCG.R 0.064 ANG.L SMA.L -0.075
SFGM.R  Cau.R 0.069 ANG.L PCG.R 0.065
SFGM.LL.  SFG.L -0.063 PCL.R CUN.R -0.068
SFGM.L  PreCG.R 0.063 PCL.R MOG.L -0.065
SFGM.L  Cau.R 0.078 PCL.R CUN.L -0.065
PCUN.R  PreCG.R  -0.089 PCL.R PCUN.R -0.063
PCUN.R  PoCG.R -0.083 PCL.R SOG.L -0.060
PCUN.R  SMG.R -0.074 PCL.R CRBLS.L 0.064
PCUN.R  SPG.R -0.070 PCL.R CRBL7b.R 0.064
PCUN.R  SFGM.L 0.063 PCL.R IFGT.L 0.064
PCUN.R IPL.R -0.065 PCL.R ROL.L 0.067
PCUN.L  PreCG.R  -0.073 PCL.R SMA.L 0.071
PCUN.L  SFG.L 0.059 PCL.R SFG.L 0.073
PCG.R SMG.R -0.065 SMA.R IPL.L -0.059
PCG.R SMA.R -0.067 SMA.R SPG.L -0.056
PCG.R PCL.R -0.065 SMA.L IPL.L -0.060
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Table 5: Shows the effect of a group difference between MCI and AD on the following pairs
of brain regions (Regions 1 and 2). he average of transformed correlation coefficients in the

MCIT group is negative.

Regionl Region2 Coeft Regionl  Region2 Coeft

PCUN.R IFGT.L 0.079 SFG.L PoCG.R 0.079
PCUN.R  SFG.L 0.081 SFG.L SMG.R 0.065
PCUN.R  MFG.L 0.089 SFG.L IPL.R 0.068
PCUN.L  MFG.L 0.071 SFG.L SPG.R 0.059
PCG.R PreCG.R  -0.090 MFG.L PoCG.R 0.081
PCG.R PoCG.R -0.081 MFG.L SMG.R 0.065

ANG.R PreCG.R  -0.075 MFG.L IPL.R 0.071
ANG.L SMA.R -0.081 MFG.L SPG.R 0.059
ANG.L SFG.R -0.073 MFG.L PCL.R 0.077
PCL.R MFG.L 0.076 ANG.R SMA.R -0.080
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